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ABSTRACT

This paper cousiders a first  or-
der periodically integrated autoregressive
(PTAR)model with a structural break.
Firsily we introduce the PIAR model
and the associated resuits oblained by
Boswijk and Franses{1992). "Then we ex-
tend the model to include a structural
Break and derive the asymptotic disbri-
bution the QLS estimalor and the Like-
lihood ratio for testing pertodic integra-
tion. Sowe remarks are made In conpec-
tion with real quarterly data in Japan.
The details of empirical studies will he re-
porled at the conference of MODSIMOS.
in Appendix a sinulation of Johansen’s
rank fest iz shown which is relevani to
testing for periodic integralion and coin-
Legration in suall samiple,

1 INTRODUCTION

We consider a quarterly observed uni-
variate time series {y, = 1, -+, n}, sim-
ply denoted by {y} in what follows. "Fhis
process can be conveniently expressed in
the mullivariale represeniation by stack-
ing the observation {y} in the apnual se-
gquence of (4 x 1) vector
;

)

Vo= (Vi Yor, Yar, Yar)

where Y,7 is the observation in season s
of year Towith T'= 1, ., N and NV = nfd.
The multivariate series {Yr} is called as
ihe veclor of guarters (VQ) process of
{w:}. In economic tine series it is often
observed that each component in Y7 is
randem walk and there are cointegraling
relationship among the four components,
This phenomenen is modeled by the pe-
riodically integrated model developed by
Boswijk and Franses(1993)(abbrevialed
as B&F hereafter). They gave a compre-
hensive ireatimend of such model. In this
section we briefly reproduce their model
and results as follows,

1.1 MoDEL AND NOTATIONS

B considered the periodic auntore-
gressive process of order p for the above
quarterly series {y} with starting values
{viep. - web A periodic autoregressive
process of order p {PATY(L)) is wrilten as

= wrsth—1 o @pst—p €y

(1)
where @i, i = 1,..,p are periodicaily
varying paramelers, e the coeflicient
of .1 equals i, if time # corresponds
to season s, and {e/} is an indepen-
dent N{0, ). Using the VQ representa-
tion the multivarinte expression for (1) is
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given by

GoYp = Y7+ -+ Er_p + Er,

=1 .N,
(2)
where B is the VQ process of {g,}.
Here ®;, i = 0, ..., P are 4 x 4 parameter
matrices. Leb L denole the lag operator
and define Lhe matrix lag polynomial

@(L) = (1?() — 1I);L e (Ii‘pLP.
{3)

B&F defined the periodic integration
as follows:
Definition (periodic integration)
The vector process {Yp} is stationary
if the roots of the characleristic equalion

el(2) = |9(:)] = 0 »

are all outside the unit circle. In this case
{w} is said to be periodically stationary,
denoted by y ~ PI(0). If the characler-
istic equation has a single root equal to 1
and all other roots outside the unit circle,
and Yyp ~ I(1) for all s, then {y} is said
ie be periodically integrated of order 1,
denoted by y ~ PI(1).

It 1s known that the presence of a sin-
gle uwnit oot {and ilie assurmption thai
all other roois are outside Lhe uni circle)
hoplies that {¥p] is cointegrated of or-
der (1,1} with coinlegrating rank 3 (See
B&TF).

I this paper we focus on the firsi-order
periodie autoregression PAR(1}):

Yt = @il 6 {5

which can be expressed by the V(Q repre-
sentation

$o¥p = &\ Ypo + By

with

i 0 0 9
(I)Uﬂ G =23 1 i '
G { — 24 1
60 0 ¢
o -] 0000
Y1000 0
000 0

The characleristic funclion is
p(2) = | @y~ iz = (1~ prpapaps).
Hence {¥7} is stationary if

lerpaparal < 1,

and has a single unit root il

i};l::l({ps =1

B&F proved that if y ~ PI{1}, then
there exist constanis g, s=1,...,4, satisfy-
ing H_,p, = 1, such that the difference
u; = yr — st 18 pertodically station-
ary. They called the series as a periodi-
cally integrated autoregression of order p,
denoted PIAR(L 1). Because of Lhis the-
orem we can rewrite, by backward substi-
tulion,

Yo = Ps Yt T Uy
= PPy Yi-n T U 9
= Yreat U b @ty PP 1 U2

+(Pl Ps1Ps—allp g,
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so that Mgy, is a periodic moving average
of order 3 in wuy {(where Ay = (1 L), the
qth difference operator). The VQ process
ol Ayy: 18 &Yy, which has the following
veclor moving average (VMA) represen-
Lation:

Oy Y = {@{) -+ @1IJ)E1‘,

where

i 4 0 0
=S (pg 1 U U
o = PP o3 i 6y
wapapq  Paps wa |l
0 @apapr w4t @1
o, = 0 0 papipz PIER
' 0 0 0 P12
¥} { 0 0

Note that we can wrile @y + & = ab’

where

i i
a = ¥ b= EELELS)
Yees PaPy
P23 ?1

(6)
1.2 TESTING FOR HI_ ¢, = L
Now we extend the PAR{L) to mchude

constante and trends. As the most gen-
eral expression, B&F considered

U = @sti—1 + o + 5T A e (7)
where T} is a step function that signifies

ihe year in periad t. The corresponding
V(Q representalion is

GuYr = O Yy 1 +a+ AT+ Er

where

<

=

1
= (ay, ay, a3, o)
and

B = (1, Pz, Bs, Ba) -

The VMA represeniation for this

model is
A Yr = (G + 0 L){a+ 7T+ Ery

= (@G + @1)0 — 7+ (90 -+ @1},@T

4-(@3 -+ @1[;}ET’.

Substituting ab we can rewrite the
YMA representation as

&Yy = ab'o — O3+ ab’ﬁT

Oy + O, LY Er.

We can rewrite this mode as

= Zj—l ‘P.sDﬂyfA] + E:_l(\': [y

+ 3 BDaT H e,

(8)

where D[, is a seasonal dummy variable
sueh that [2, = 1 if time { is in season
s and [7,,=0 elsewhere. B&F considered
the likelihood ralio test statistic

LR = u(lné? —1néf)
[or testing
T = Eij:ilp, =1

in the case (i) as in Theorem 1 below,
where &7 is the variance estimator oh-
tained by OLS residual in (8) and 37 is

the variance estimator by obtained ML
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residual under the restriction # = 1 in
(8). They show Lhe following result,

Theorewn 1. {Boswijk aund TFranses
1992): Let {y) be generated by the pe-
riodic awloregression (8), and let b as
groen in (6). Then we have, under Hy
I_ye, = 1, and n — oo,

LR =
(& war)™ RVG))
©)

where tV(r) is @ standard Brownian mo-
tron process, = denotes weak convergence
i distribuiion and

() ifor =0 and 7= 0, then
Wafr) = W),

(it} if o =0 and B =0, then
W) = V() = [L V()L
{itdy if '3, lhen

Wa(r) =

Wa(r) = 120r = §) Jy (¢ = DiVa()dr

They also prove the asymptolic result
for the case (i):

N —1)=

‘-,2,“12,‘_ o
o ey i),

which is the same asymptotic null distri-
bution as Fuiler's(1976) n{p~ 1) for a unit
reot in a (non-periodic) autoregression.

2 STRUCTURAL BREAK

in recent econoimelric literatures the
untt rool problem is discussed in asso-
ciation with structural change in non-
periodic time series afler Perron{l1989)
was published. In this section we deal
wilh this problem in periodic time series.
First we extend the PIAR(1,1} model to
niclude a struclural break.

Let Iyysry and g, denote an indicator
function such that

](‘ZT) =011t <

=1il!>r

and
gr =1 ift <,
=t—7 ift>T

Consider the {ollowing two cases:
: 4
(“‘) e = Z,,-;%i’a Dstt—1

+ }:j_l ol + Z:ml Ji Dstlr(lzr) + €4,
(14}

{U) Ye = z:ml ‘Pstéyt—i

+ ij; G'JDH + Z:—l /33 Da!gr + T
(11

Note that a break point in time = is
assuwmed to be known, Furthermore as in
Perron(1989), we assuine that a ratio

A
N
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is fixed as n — oo where IV is the number
of years and N, is the munber of years
before a structural break. This assumnp-
tion is not realistic but indispensable to
develop the asymptotic theory, Por the
two cases we have

Theovemn 2. Let LI, denote the like-
lihood ratio in the case (fv) when 8’5 = 0,
then we have, under Ho @ [li_,es = 1,
n — o0,

N{#~-1)=
[_[; ﬁf(?-)?fzrr [IW v,

LRy =

{ [ N ﬁf(r)?m-] A ﬁ’(r}dll’(r)}- ,
where
ﬁ"('r') = (l - j(fz-r))ﬁv](i') + [(gzr)ﬁ’rg(?'}.

with

Wy(r) = () = [ TV (r)dr
Wa(r) = W) = [ W (rydr

and

hm A=k,

e 00

_ N
A=

where k is a constani and 1V {r) is a stan-
dard Wiener Process,

Proof. given in Appendix B which is
available from the aulkor upon request.

Theorvem 3. Let LRy denote the like-
lihood ratio in the case (v) when ¥/F = 0,

then we have, under fy @ Wl v, = L
n — 00,

Ni{F -1y =

! "'2-“!'[“', Fio
[fn V() rh} fo W(mdiv(r),

LRy =

2

{ [j;]‘ ﬂr{w)?dr] E I ﬁ-’(r)dn’(r)} :

where

—h(X) " tna(r) f(j (P ()
with

B(3) = LA3(1 =AY,

3

ny(r) = max{r — L+ A,0) — A;

—{3A% — 2% {r — %),
where

/\x%‘ Ny =N —~ Ny and

with

Hmy oo A = &,

where & 13 a constant.

Proof. given in Appendix B which is
available from the auther upon request.

The expression h{A) and ny(r) are the
same as in Halanaka and Kolo(1993)
who deall with structural change in non-
periodic time series. They also deal with
the same problem in their 1995 paper.
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The non-standard asymplotic resulis in
Theorems 1,23 implies thal the standard
test procedures are not valid. To make
these asymptotic distributions useful for
a practical purpose 1t 18 necessary io
tabluate the disiribution by simulation.
I'ranses and MceAleer(1994) considered an
alternative tesling procedures based on
a generalized diflerence ¥ — P, y,and
hence thetr tesl can be breated within the
standard asymptotic theory,

3 EXAMPLES AND
REMARKS

fn order Lo see il there are periodic in-
tegration in real quarterly data we have
to perform the lollowing test procedures
(1) Unit root Lest Tor each series ol Yp,
in sth quarter, s=1,...4, by, say, Dickey-
Fuller test, (2) Periodic unit root test or
testing for the hypothesis g y ~ Pf(i)
based on the previeusly obiained result
that if g, ~ P7(1), then a sbatistic N (7 —
1) the same asywmpiotic distribution as
Dickey-Fuller test statistic n{p — 1). Or
(2") Cointegration rauvk test for the hy-
pothesis Hy:{¥r} is cointegrated of or-

der (1,1) with cointegrating rank 3. 1If

ye ~ PI{1), then a statistic N(F — 1) the
same asymptoiic distribution as Dickey-
Fuller test statistic n(f — 1) and {¥r} is
cointegrated of order (1,1} with cointe-
grating rank 3.

Statistical tables for these tesls are
given in literalures sucl as Fuller(1976),
Johansen{i988), and Oslerwald-
Lunum($992) Bul we have to be care-
{ful 1o use tables for Johansen’s rank fest
hecause they are based on asymptotic dis-
tribution. As the sample size N, a num-
ber of year, of mosl quarterly time se-
ries data are not large enough lo apply
these tables. We simulated 95% critical
peint of Johansen's rank lest for sam-

ple size N=1000,500,100,50, and 25 and
the resuits are shown in Appendix. Tt
shows that the asymptlolic critical points
of Johansen’s rank tesl are inappropriate
when sample size is very small such as
N = 25 which is often the cage in empir-
ical studies.

As an example we examine the quar-
terly thme series of Japanese GNP for
1970.3-1892.1¥V. {u this case we verified
that each quarler was random walk and
obtained N(# — 1% = 0.87 indicating that
the quacrterly GNP series {y} is period-
ically integraied. Although the VQ pro-
cess { ¥} should have rank 3 in theory if
{w} ~ PI(1), Johansen’s rank test coutd
nob show thal rank=34.

So far we have deall with a quarterly
time series (s = 4} , but the idea of peri-
odic integralion can be extended to any
s. Az an another example we consider the
daily FTSE index of UK for from 31 De-
cember, 1979 to 7 April, 1995 in which
s = 5, or {ive days of the week are re-
graded as b seasons. In this case VQ
process is replaced with a vector of days

(VD)
Yr = (Yiz, Yor, Yar, Yar, Ysr ) .

We verilied that each day of the week
was random walk, A statistic V(& -~ 1)
can be used to test the null of periodic in-
tegration PI(1) only when s = 4. There-
fore we used Johansen’s rank test for tesi-
ing the rank of Yy and found that the
rank was 4, implying that the daily FTSE
mdex is periodically infegrated of PI(1).

The detailed resulis of this example
and olher empirical study will be shown

at the conlerence of MODSIAMY5.

e 116 —



Ackuowledgment: | am grateful lo
Michael McAleer for his valuable com-
ments and discussion oun an early version
of this paper. 1 also thank for H. Peler
Boswijk and Philip Hans Franses for their
kind answers to my questions on their
1993 paper.

REFERENCES
Boswijk, 1. P. and P. {l. Franses
(1993},

Unil BRools in Periodic Aulore-
gressions, Discussion Paper, Tin-
bergen Instibute, (Lo appear In
the Journal of Time Series Anal-
ysis)
FPranses, . I and M. McAleer
(1994),
Testing Nested and Non-Nested
Periodically Integrated Autore-
gressive Models, Reporl 9402/4,
Erasmus University Rotlerdam.
Fuller, W. A. {1478),
Introduction to Statistical Tine
Series, New York, Wiley
Hamiiton, J.12.(1994),
Time Series Analysis, Princeton
Universily Press.

e

Hatanaka, M. and Y. Koto {1995),
An Bacompassing  Analysis of
Difference and Trend Stationary,
The Japauese Economic Heview,

Vol 46 No.2,

Hatanaka, M. and Y. Koto {1993),
The Encompassing and the ‘Gen-
eral to Specific’ Model Selection
Approach to the Univariate Unif
Root Problem, mimeographed.

Johansen, 5.(1988}),

Statistical Analysis of Cointe-
grating Vector, Journal of Eco-
nomic Dynamics and Control
Vol 12,

Oslerwald-Lenum, M. (1982)
A Note with Quaniiles of the
Asywmptolic Distribution of the
Maximum Likelheod Cointegra-
tion Rank Test Stalistic, Oxford
Bulletin of Economics and Statis-
tics, Vol.bd,

Perron, P. (1989),
The Great Crash, The Qil Price
Shock, and the Unit Root Iiy-
pothesis, Fconometrica, Vol 57,

No.g, 1361-1401.



Appendix A:
Siunulation of Johansen's Rank Test of Cointogration in Small Sanple.

Johansen's Maxinmun Likelihood Cointegration Rank Test Statistic are sinu-
fated for saniple size 1000, 500, 160, 50, and 25. We generated arlificial VQ series

IER

(37} Tor the four cases with cointegration rank r=0.1,2, and 3. The restricled and
unrestricted likelihood ratios wers calenlated from the Lwo auxiliary kth order VAR

Fegressions:
Ay = Ty + Ay + 1Ay o+ -+ ﬁai\-ﬁ.rfffkwl + iy,
Yoy = o+ O Ay +Od -2t F S Ayr—foy U

where #g, 1i;, 9, @ are the OLS estimators and ity and & are QLS residuals.
In our simulation & was chosen 1.2,3.5,and 190, The procedures of caleulalions are
canmmacized in Ch.20 of Hamilton(1994). Only a part of the shnulation results are

given in the next table.

Simulated 95% Chritical Points of Johanscn Rank Test

Cainlegralion 1= 1006 S00 100 it h
Hank

Q0 A0.76 40,44 43,1 an.83  © 5G.08
I 24.45 24.51 26.73 25.58 27.34
g 12.58 1Z2.53 12.63 12.36

3 2.38 2.35 2.3 2.44 2.65

0 40.4 46.71 444 50.7 81.61
k=2 i 24.23 24,35 25.74 2683 .71
Z 1716 12.43 12.77 12.19 13.13
3 2.34 2.45 Z.50 .57 118

0 40,84 4170 4672 5816 16777
k=3 1 24,55 24,87 26.35 8.1 64.32
2 12.42 §2.45 12.76G 12.07 20.86
3 .46 2.39 4,48 7.69 4.79
\ ¢ 41.36 4t.81 52.0G aj.2 HA
k=5 1 24.068 215.07 27.28 38.35 A
2 12.12 12.68 12.50 16.25 A
3 2.0 236 7.72 4.19 NA
0 42.11 13.82 15.50 10777 HA
k=10 1 .5 571 1134 138,18 HA
2 12.56 12,08 12.75 (G8.88 A
3 2.0 2.51 3.06 21,57 M

Corresponding Asyeplalic Values [or T-oo

£ 38.80
i 24.31
[ 12.53
3 3.84

Tzeample size(mmber of years of quarterly datal.
femmbor of iags in the anxiliary regressions.
Asspiolic values are cited from Osterwald-Lenun
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